
Group 29 – Microbiology
Lab Information
Management and
Visualization System

Benjamin Vogel, Brittany McPeek, Samuel
Jungman, Rob Reinhard, Kyle Gansen, Ben
Alexander

Background of Technical Problem

● Our project focuses in on data importation, synthesis, storage, and
exportation

● Our project also is meant to be a useful tool to individuals that are not as
tech-savvy

● Consequently, our program needs to be very adaptable and easy to use in
a variety of ways if it’s to be at all helpful

● That means we need to create tools to accomodate all data collection
methods currently in place within the micro bio lab that acts as our
client.

● Bottom line, our program has to service multiple data types, formats, and
file extensions

Technical Problem

● Data files come in a variety of different formats (.csv, .xlsx, .tsv)
● Different file formats needs to be parsed in a different manner
● The data within those files may be formatted in a variety of ways
● All of the different ways data can be organized within those files

must be accounted for
● The data from each file needs to be formatted in a manner

allowing it to be graphed

Possible Solutions

● Only allow the user to import certain types of files
● We will have to have separate classes for importing each file

type
● For each file type, the data format can vary. Within each class,

parse the data into a standard form to be graphed
● If this isn’t possible, notify the user of how the format needs to

change
● Another option: for each file type, have the user specify the data

format and have differing file formats

Feasibility of Solutions

● Have the user specify the data format
○ Could lead to errors if not correct

● Make it automatic but only allow the user to import certain
types of files
○ Focus on most widely used types
○ Minimal setting up for client

● Have specific outputs for each data type
○ Puts importation work onto graphing component
○ Breaks our concept of isolated components

● Standardized data output
○ Cleaner interaction between two components

Final Technical Solution

● Create individual classes for each different data type/format
● Have one superclass that each class will inherit from
● The other modules will call the superclass method
● Each individual import for the different data types will return a

unified data structure to pass to the graphing module

Ramifications

● Every time we want to import a new data type we will have to
create a new class specific to that data type
○ Requires maintenance

○ Not very scalable

● Makes our system more modular
○ Easier to test and find bugs

○ Easier for a large group to work on

○ Easier to understand

